Rapid Treatment Response of Suicidal Symptoms to Lithium, Sleep Deprivation, and Light Therapy (Chronotherapeutics) in Drug-Resistant Bipolar Depression

Francesco Benedetti, MD; Roberta Riccaboni, PsyD; Clara Locatelli, MD; Sara Poletti, PhD; Sara Dallaspezia, MD; and Cristina Colombo, MD

ABSTRACT

Background: One third of patients with bipolar disorder attempt suicide. Depression in bipolar disorder is associated with drug resistance. The efficacy of antidepressants on suicidality has been questioned. Total sleep deprivation and light therapy prompt a rapid and stable antidepressant response in bipolar disorder.

Method: We studied 143 consecutively admitted inpatients (December 2006–August 2012) with a major depressive episode in the course of bipolar disorder (DSM-IV criteria). Among the 141 study completers, 23% had a positive history of attempted suicide and 83% had a positive history of drug resistance. During 1 week, patients were administered 3 consecutive total sleep deprivation cycles (each composed of a period of 36 hours awake followed by recovery sleep) combined with bright light therapy in the morning for 2 weeks. At admission, patients who had been taking lithium continued it, and those who had not been taking lithium started it. Severity of depression was rated according to the Hamilton Depression Rating Scale (HDRS) (primary outcome measure) and Beck Depression Inventory (BDI).

Results: Two patients switched polarity. Among the 141 who completed the treatment, 70% achieved a 50% reduction in HDRS score in 1 week, which persisted 1 month after in 55%. The amelioration involved an immediate and persistent decrease in suicide scores soon after the first total sleep deprivation cycle \(F(3,411) = 42.78, P < .000001 \). A positive history of suicide attempts was associated with worse early life stress and with worse suicide scores at baseline, but it did not influence response. Patients with current suicidal thinking or planning responded equally well \(F(3,42) = 20.70, P < .000001 \). Remarkably, however, nonresponders achieved a benefit, with significantly decreased final scores also including suicidality ratings \(F(3,120) = 6.55, P = .0004 \). Self-ratings showed the same pattern of change. Previous history of drug resistance did not hamper response. During the following month, 78 of 99 responders continued to stay well and were discharged from the hospital on lithium therapy alone.

Conclusions: The combination of total sleep deprivation, light therapy, and lithium is able to rapidly decrease depressive suicidality and prompt antidepressant response in drug-resistant major depression in the course of bipolar disorder.

J Clin Psychiatry

Bipolar depression is a difficult-to-treat condition that has been associated with extremely low success rates of antidepressant drugs in naturalistic settings. Patients with bipolar disorder spend a substantial proportion of their time ill, with depression representing their predominant abnormal mood state, and with the repeated use of antidepressant drugs being related to poor prospective response to naturalistic antidepressant treatment. Possibly as a consequence of their disabling condition, about 30% of patients with bipolar disorder attempt suicide, and about 20% eventually die of suicide.

Treatment of suicidality is a major issue, but few options are available. Patients with suicidal thoughts or intent compared to those without suicidal thoughts or intent have a clearer lifetime history of recurrence of major depressive episodes but are usually excluded from trials, thus limiting the generalizability of results. Antidepressant interventions prompt remission and can then reduce the suicide risk associated with acute mood episodes, but a large-scale epidemiologic study did not support the usefulness of antidepressant drugs in reducing lifetime completed and attempted suicide in mood disorders. Administration of antidepressants to acutely suicidal patients can even be risky because of an age-dependent risk of suicidal behavior and ideation associated with use of antidepressants, which led to a US Food and Drug Administration black box warning for patients under age 25 years. When effective, antidepressants are slow, however, with literature trials showing that no difference can be expected during the first 2 weeks between active and placebo treatments. Additionally, the selective publication of positive trials boosted the apparent efficacy of active drugs. Lithium is able to reduce the lifetime suicide risk of patients with bipolar disorder to the same levels of the general population, but it shows a long latency of antidepressant action and is then of little help in the acute phase. Finally, the overall depression severity is moderately associated with suicidal ideation, which associates more with core mood symptoms and self-punitive thinking, and can remain high even when somatic and vegetative symptoms improve as a result of treatment response.

The unmet clinical need for the rapid resolution of breakthrough life-threatening symptoms, such as suicide, and the conundrum between the risks of treatment-emergent mania and of relapse after treatment discontinuation often lead to prolonged and highly complex medication regimens to achieve a stable response in bipolar disorder. Hence, the interest in chronotherapeutics that might eliminate the long latencies of traditional antidepressant treatments yet offer
A rapid treatment of acute suicidality is an unmet need in severe drug-resistant bipolar depression because the efficacy of antidepressants on suicidality has been questioned and because clearly effective drugs, such as lithium, have a long latency of action.

The combination of chronotherapeutic techniques (sleep deprivation, light therapy) with lithium can prompt treatment response in drug-resistant depression, with a clinical benefit that involves an immediate decrease in suicidality. These benefits partly extend to nonresponders.

Clinical Points

Patients and Treatment

We studied 143 consecutively admitted inpatients affected by a major depressive episode without psychotic features in the course of bipolar disorder (DSM-IV criteria, SCID-I interview). Among the 141 study completers, 32 criteria, DSM-IV features in the course of bipolar disorder (affected by a major depressive episode without psychotic

Patients and Treatment

We studied 143 consecutively admitted inpatients affected by a major depressive episode without psychotic features in the course of bipolar disorder (DSM-IV criteria, SCID-I interview). Among the 141 study completers, 32 (22.7%) had a positive history of suicidality. The criterion for suicidality was 1 or more documented suicide attempt (broadly defined as any behavior aimed at killing oneself) during the lifetime. This sample does not overlap with those described in previous studies.

Inclusion criteria were a baseline Hamilton Depression Rating Scale (HDRS) score of 18 or higher; absence of other Axis I diagnoses; absence of mental retardation in Axis II diagnoses; absence of pregnancy, history of epilepsy, and major medical and neurologic disorders; no treatment with long-acting neuroleptic drugs in the last 3 months before admission; and absence of a history of drug or alcohol dependency or abuse within the last 6 months. After complete description of the study to the subjects, written informed consent was obtained. The study was approved by the local ethics committee.

All patients were administered 3 consecutive total sleep deprivation cycles (day 0–7); each cycle was composed of a period of 36 hours awake. On days 0, 2, and 4, patients were totally sleep deprived from 0700 until 1900 of the following day. They were then allowed to sleep during the night in a sleep window 1900–0800 of days 1, 3, and 5. Patients were administered light therapy (exposure for 30 minutes to a 10,000 lux bright white light, color temperature 4,600 K) at 0300 during the total sleep deprivation night and in the morning after recovery sleep, half an hour after awakening.

Between 0800 and 0900. Light therapy in the morning was then continued for 2 weeks. At admission, patients who had never taken lithium started it together with the chronotherapeutic procedure to enhance its effect and prevent relapse (n = 92). No other antidepressant was administered.

Patients were followed up for 1 month after the acute chronotherapeutic treatment. Nonresponders were treated by the psychiatrists in charge upon clinical need. Responders continued lithium alone.

Data Collection and Analysis

Severity of depression was rated (days 0, 1, 2, and 6) by the psychiatrists in charge of the patients according to a modified version of the 21-item HDRS (referred to as the HDRS-NOW, the primary outcome measure), from which items that could not be meaningfully rated due to the total sleep deprivation procedure were excluded (ie, weight changes and insomnia: item numbers 4, 5, 6, and 16). Response was defined as a 50% reduction of HDRS scores. Perceived depression was self-rated on the 13-item Beck Depression Inventory (BDI). Current suicidality was rated according to the HDRS suicide item, which correlates with number of suicide attempts, age at first attempt, and other ratings of suicidality and on the BDI.

Given the positive relationship between early life stress and suicidality in bipolar disorder,46 early (age 5–15 years) and recent (last 3 years) stressful life events were scored according to the Social Readjustment Rating Scale (SRRS), which focuses on occurrences that lead to readjustment-requiring changes in usual activities and which was validated in similar settings.

Repeated-measures analyses of variance were performed in the context of the general linear model. The analysis was separately performed on the 3 outcome measures: HDRS, HDRS item 3 (suicide) score, and BDI. The main factors of interest were response to treatment and history of suicide attempts. Time and ongoing lithium treatment were also considered as factors. The significance of the effect of the single independent factors on the dependent variable was estimated (least squares method) by parametric estimates of predictor variables and following standard computational procedures. Analyses were separately performed in the whole sample and in patients who presented current suicide thinking or planning.

RESULTS

One hundred forty-one patients completed the treatment. Two patients switched polarity, showing moderate manic...
symptoms after the first total sleep deprivation, and were then treated with benzodiazepines and a second mood stabilizer, thus restoring euthymia. Clinical and demographic characteristics of the 141 completers, divided according to history of suicide attempts and response to treatment, are summarized in Table 1.

Patients with a positive history of suicide attempts compared to those with a negative history showed higher levels of early life stress (mean [SD] number of events: 17.61 [10.99] vs 12.29 [8.47], \(t = 2.91, P = .004 \); SRRS score: 390.78 [258.97] vs 282.13 [179.73]; Student \(t \) test, \(t = 2.70, P = .008 \)) but not of recent stress. Responders showed a lower severity of current depression than nonresponders on baseline self-rated BDI score (14.71 [7.37] vs 19.59 [7.80]; \(t = 3.25, P = .001 \)) but not on HDRS. No other effect of these variables, nor their interaction, was significant.

Effect of Chronotherapeutics

Ninety-nine patients (70.1%) responded to treatment. A positive history of suicide attempts was not associated with response (50% reduction in HDRS score; see Table 1).

HDRS scores significantly decreased after chronotherapeutics (Figure 1; main effect of time: \(F_{3,411} = 119.04, P < .00001 \)).

This effect was not influenced by previous history of suicide attempts (2-way interaction of time and history: \(F_{3,411} = 0.55, P = .647 \); 3-way interaction of time, response to treatment, and history: \(F_{3,411} = 1.42, P = .237 \)). Remarkably, however, nonresponders achieved a benefit from treatment and showed significantly decreased final HDRS scores in respect to baseline whether they did (post hoc Newman-Keuls test, \(P = .024 \)) or did not have (\(P = .001 \)) a positive history of suicide attempts.

The significant HDRS decrease included the suicide item (Figure 2; main effect of time: \(F_{3,411} = 42.78, P < .00001 \)).

Table 1. Clinical and Demographic Characteristics of the 141 Participants, Divided According to Their Lifetime History of Suicide Attempts and Response to Antidepressant Treatment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Responders</th>
<th>Nonresponders</th>
<th>Responders</th>
<th>Nonresponders</th>
<th>F or (y^2)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>21</td>
<td>11</td>
<td>78</td>
<td>31</td>
<td>0.42</td>
<td>NS</td>
</tr>
<tr>
<td>Age, y</td>
<td>45.71 (11.90)</td>
<td>43.36 (8.61)</td>
<td>47.91 (10.97)</td>
<td>47.61 (13.44)</td>
<td>0.63</td>
<td>NS</td>
</tr>
<tr>
<td>Sex, n</td>
<td>Male 6</td>
<td>5</td>
<td>29</td>
<td>15</td>
<td>2.41</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Female 15</td>
<td>6</td>
<td>49</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education, y</td>
<td>11.38 (3.88)</td>
<td>12.73 (3.58)</td>
<td>10.8 (3.94)</td>
<td>11.87 (5.19)</td>
<td>0.91</td>
<td>NS</td>
</tr>
<tr>
<td>Age at onset, y</td>
<td>32.71 (10.77)</td>
<td>23.27 (5.73)</td>
<td>31.77 (10.59)</td>
<td>33.10 (9.16)</td>
<td>2.85</td>
<td>NS</td>
</tr>
<tr>
<td>Duration of illness, y</td>
<td>13.00 (8.36)</td>
<td>20.09 (9.59)</td>
<td>16.14 (9.22)</td>
<td>14.52 (12.95)</td>
<td>1.39</td>
<td>NS</td>
</tr>
<tr>
<td>Duration of current episode, wk</td>
<td>33.18 (40.49)</td>
<td>12.13 (7.43)</td>
<td>22.19 (21.31)</td>
<td>29.74 (31.20)</td>
<td>1.59</td>
<td>NS</td>
</tr>
<tr>
<td>No. of previous depressive episodes</td>
<td>5.00 (4.27)</td>
<td>3.82 (2.18)</td>
<td>5.99 (5.94)</td>
<td>6.55 (7.66)</td>
<td>0.71</td>
<td>NS</td>
</tr>
<tr>
<td>No. of manic episodes</td>
<td>3.10 (2.10)</td>
<td>1.91 (1.22)</td>
<td>3.88 (4.32)</td>
<td>3.40 (4.02)</td>
<td>0.85</td>
<td>NS</td>
</tr>
<tr>
<td>Total no. of previous recurrences</td>
<td>8.10 (6.56)</td>
<td>5.73 (3.23)</td>
<td>9.87 (10.03)</td>
<td>9.66 (10.76)</td>
<td>0.75</td>
<td>NS</td>
</tr>
<tr>
<td>Early stressors, no. of events</td>
<td>15.54 (7.80)</td>
<td>19.54 (8.13)</td>
<td>17.17 (11.53)</td>
<td>16.14 (10.03)</td>
<td>0.65</td>
<td>NS</td>
</tr>
<tr>
<td>Recent stressors, no. of events</td>
<td>19.54 (8.13)</td>
<td>21.00 (9.30)</td>
<td>17.17 (11.53)</td>
<td>16.14 (10.03)</td>
<td>0.65</td>
<td>NS</td>
</tr>
<tr>
<td>SRRS score</td>
<td>506.85 (201.99)</td>
<td>537.90 (283.88)</td>
<td>462.13 (306.39)</td>
<td>393.09 (212.99)</td>
<td>0.83</td>
<td>NS</td>
</tr>
<tr>
<td>HDRS score</td>
<td>23.76 (3.95)</td>
<td>21.60 (3.20)</td>
<td>23.27 (4.80)</td>
<td>23.59 (4.12)</td>
<td>0.61</td>
<td>NS</td>
</tr>
<tr>
<td>HDRS-NOW day 1</td>
<td>20.71 (3.93)</td>
<td>18.45 (2.77)</td>
<td>20.01 (4.51)</td>
<td>20.45 (4.75)</td>
<td>0.73</td>
<td>NS</td>
</tr>
<tr>
<td>HDRS-NOW day 2</td>
<td>10.24 (5.99)</td>
<td>16.18 (3.84)</td>
<td>11.68 (6.07)</td>
<td>16.29 (6.63)</td>
<td>6.71</td>
<td>< .001</td>
</tr>
<tr>
<td>HDRS-NOW day 3</td>
<td>9.95 (5.47)</td>
<td>16.36 (3.56)</td>
<td>9.83 (5.90)</td>
<td>15.58 (5.29)</td>
<td>11.23</td>
<td>< .001</td>
</tr>
<tr>
<td>HDRS-NOW day 7</td>
<td>4.33 (3.26)</td>
<td>15.00 (5.40)</td>
<td>4.37 (3.13)</td>
<td>16.19 (4.90)</td>
<td>90.59</td>
<td>< .001</td>
</tr>
<tr>
<td>BDI baseline score</td>
<td>15.67 (7.86)</td>
<td>21.64 (8.76)</td>
<td>14.49 (7.34)</td>
<td>19.00 (7.63)</td>
<td>4.40</td>
<td>< .01</td>
</tr>
</tbody>
</table>

Abbreviations: BDI = Beck Depression Inventory, HDRS-NOW = modified version of Hamilton Depression Rating Scale, NS = nonsignificant, SRRS = Social Readjustment Rating Scale.

Figure 1. Pattern of Change of Depression Severity (HDRS score) During Treatment in Patients Divided According to Chronotherapeutic Treatment Response and to Previous History of Suicide Attempts

© 2013 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES.
Responders with a positive suicide history showed higher baseline levels and a bigger decrease after the first total sleep deprivation + light therapy treatment ($F_{3,291} = 6.31, \ P = .0004$). Nonresponders, however, who achieved a smaller, although significant benefit from treatment (effect of time: $F_{3,120} = 6.55, \ P = .0004$), showed a similar significant decrease in HDRS score independent of history of previous suicide attempts (post hoc Newman-Keuls test: positive history, $P = .039$; negative history, $P = .004$).

A subgroup of 16 patients (11.4%) reported current suicidal thinking or planning (HDRS suicide item score ≥ 2) and showed the same trend of decrease in HDRS suicide scores observed in the whole sample (effect of time: $F_{3,42} = 20.70, \ P < .000001$) (Figure 3), with a significant final benefit for nonresponders too (post hoc Newman-Keuls test: $P = .002$ in respect to baseline). None of the patients’ scores on the suicide item decreased.

Compared with patients who lacked current suicidal planning, suicidal patients showed marginally worse overall HDRS scores ($F_{1,1139} = 3.93, \ P = .049$) due to significantly worse scores at baseline (day 0: $\beta = .233, t = 2.82, P = .005$), but not during and after treatment (day 1: $t = 1.25, P = .21$; day 2: $t = 1.35, P = .18$; day 6: $t = 1.30, P = .20$).

Self-ratings of depression (13-item BDI) confirmed these same effects. Correlations between BDI and the corresponding HDRS scores were all significant ($r = 0.23, 0.48, 0.49,$ and 0.61, at days $1, 2, 3, \text{ and } 7$, respectively). A complete set of 4 daily ratings was obtained in 109 of 141 patients. Patterns of change over time were closely similar to those observed with HDRS: a highly significant decrease in depression severity after treatment ($F_{3,324} = 36.36, \ P < .000001$), with a significant amelioration of symptoms also found in nonresponders (post hoc Newman-Keuls, $P = .0007$); no influence of previous history of suicide attempts (interaction with time: $F_{3,321} = 0.85, P = .469$) nor of current suicidality ($F_{3,321} = 1.59, P = .192$); and, most important, a highly significant decrease of the suicide item ($F_{3,342} = 9.99, P = .000002$), again involving a significant decrease in nonresponders (post hoc Newman-Keuls, $P = .0006$).

Effect of Lithium

Ongoing lithium treatment conferred some advantage in respect to newly started lithium (Figure 4), with a significant main effect on global HDRS scores ($F_{1,139} = 4.18, P = .043$) due to a better improvement after the first total sleep deprivation + light therapy cycle (day 2: $\beta = .169, t = 2.03, P = .045$) but with similar final scores (day 7: $\beta = .087, t = 1.03, P = .303$).

History of drug resistance did not significantly influence the pattern of decrease of HDRS scores, either when comparing drug-resistant and non–drug-resistant patients ($F_{3,417} = 1.46, P = .223$) or when dividing the drug-resistant patients into 3 classes (stage 1, stage 2, stage 3 or higher: $F_{9,411} = 1.31, P = .232$).

Previous history of suicide attempts was associated with worse suicide scores at baseline ($\beta = .248, t = 2.84, P = .005$) and did not interact with time in influencing the decrease of HDRS suicide scores ($F_{3,411} = 0.77, P = .512$), but it significantly interacted with time and response ($F_{3,411} = 3.42, P = .017$). This differential result occurred because the interaction of time and history was significant among responders but not among nonresponders.
During the following month with lithium monotherapy, 21 of 99 responders showed signs of relapse and were administered an adjunctive antidepressant treatment by the psychiatrists in charge, while the other 78 of 99 responders continued to stay well and were discharged from the hospital with lithium therapy alone.

DISCUSSION

The 1-week combination of lithium and chronotherapeutics was followed by a 70% response rate in patients affected by bipolar depression. Considering the 21% relapse rate in the following weeks, this brings the success to 55.3% of patients achieving a sustained response. Consistent with previous studies,47 the rate of switch into mania was very low (1.4%) and manic symptoms rapidly disappeared.

The rate of success is higher than that reported in previous studies of drug-resistant bipolar depressed patients (44% of acute response, with only 40% of responders staying well after 1 month).29 The improvement in success rate from 17.6% to 55.3% could be due to 2 methodological innovations: starting lithium together with chronotherapeutics in patients not treated with lithium and prolonging light therapy for 1 week after the acute response. Lithium promotes response in nonresponders48 and can overcome the detrimental effects of biological factors hampering response to antidepressants.36,49 Light therapy promotes response in drug-resistant depression.50,51 Both lithium and light therapy are synergistic with sleep deprivation,30 and could then interact to sustain its effects. The decrease in suicide scores was immediate, soon after the first total sleep deprivation + light therapy, thus suggesting a direct therapeutic effect of total sleep deprivation (and not of recovery sleep) on this symptom (Figures 2–3).

Confirming the literature, our results showed that a positive history compared to a negative history of suicidal acts was associated with more early stress32,53 and with worse current suicidality.53 Nevertheless, 66% of patients with a positive history responded with a rapid drop in suicidal symptoms. Remarkably, suicidality also decreased in nonresponders, who then obtained a substantial benefit despite not achieving final response.

These effects on suicidal thinking confirm previous studies showing that sleep deprivation rapidly reverts the baseline mood-congruent cognitive biases toward negative stimuli in depression.54,55 Cognitive distortions include pessimism and self-deprecatory and self-accusatory thoughts. We showed that effective antidepressant chronotherapeutics normalized the reactivity of corticolimbic circuitries to emotional and moral stimuli, thus restoring an efficient top-down control on response to negative stimuli by cortical regions involved in the generation and control of depressed mood.56

Mechanisms of these rapid effects involve multitarget actions on several neurobiological pathways.57 Total sleep deprivation acts on brain serotonin, dopamine, norepinephrine, glutamate, and adenosine, and changes in these signaling cascades are proportional to the observed behavioral effects.58 These factors influence both behavior59 and brain metabolism and reactivity56,60,61 as well as a steady increase of excitability of cortical circuits.62,63 Remarkably, a comparable rapid effect on suicidality had been reported for the glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonist ketamine64–66 sleep deprivation itself alters the circadian cyclicity of glutamatergic neurotransmission,63 with changes of glutamate/glutamine concentrations being proportional to mood improvement,67 and has been shown to modify the expression of NMDA receptor subunits68 and reduce NMDA sensitivity in model organisms.69 Treatment response in this study was significant on day 1, but it continued to drop after treatment repetition, while, in contrast, the suicidal ideation dropped to a very low level on day 1 and remained low thereafter (Table 1). This is directly compatible with the effects reported after extremely low doses of ketamine.64–66 Changes of glutamatergic neurotransmission could then be a core component of these effects uniquely common to the 2 treatments.

Lithium could potentiate these mechanisms by acting on signaling cascades downstream the monoaminergic pathways,70,71 by promoting synaptic plasticity,72 and by overcoming the detrimental effects of genetic factors associated with treatment failure and suicide.32,36 Lithium protects against both the reduction of gray matter volumes associated with suicidal behavior in bipolar disorder73 and the disruption of white matter connecting corticolimbic circuitries.73,74 Bipolar disorder,75 drug-resistant depression,76 and suicide77 have been associated with a proinflammatory state and with an abnormal activation of brain microglia and of circulating monocytes,78 and again both sleep manipulations79 and lithium80 target inflammatory mechanisms associated with depression.81,82

Figure 4. Pattern of Change of Depression Severity (HDRS scores) During Chronotherapeutic Treatment in Patients Divided According to the Status of Lithium Medication (ongoing or newly started)

![Figure 4](image-url)
The clinical relevance of the above is remarkable in light of the debated issue of how to treat suicidality in depression. In other psychiatric conditions, such as schizophrenia, a protective effect of adequate and effective antipsychotic medication against suicide has been repeatedly confirmed.

The analysis of proprietary data submitted to the US Food and Drug Administration suggests instead that the net effect of antidepressant drugs, compared with placebo, could be negative among adults aged under 25 years, neutral on suicidal behavior but possibly protective for suicidal ideation in adults aged 25–64 years, and protective against both suicidality and suicidal behavior in those aged more than 65 years. In the present study, we observed no suicidal behavior (completed suicide, attempted suicide, or preparatory acts), and no worsening of suicidal ideation among participants, who were aged a mean (SD) of 47.16 (11.50) years (range, 19–71). Only 3 participants were aged <26 years, thus preventing conclusions on the effects of chronotherapeutics on suicide in younger adults, but our observation of protective effects in the overall sample confirms its central role as a rapid first-line option in bipolar depression.

Again, lithium could favorably interact with chronotherapeutics in limiting the suicide symptoms because it has a clear protective effect on suicide behaviors in bipolar disorder and enhance the antidepressant effect of sleep deprivation. It has been proposed that lithium can act on suicide by decreasing impulsivity, aggression, or decision-making deficits, which are endophenotypes intermediate between suicidal thoughts and behaviors, and who remain on antidepressants for more than 2 months at a very low rate, with further discontinuation being associated with a further substantially increased risk of depressive relapse. A careful monitoring of mood in the weeks after acute response to chronotherapeutics is then advised in order to promptly start that complex pattern of medication trials, which chronotherapeutics could not avoid in these cases.

Limitations of the present study include lack of placebo control for the chronotherapeutic procedure, lack of assessment of lifetime medications and of their possible effects on the current status, absence of drug-naive patients, absence of evaluation for lifetime compliance, absence of testing of interrater reliability, and the low number of patients who reported current suicidal thinking or planning, which prevented the study of interactions (eg, the possible potentiating effect of lithium salts) in this subgroup.

In conclusion, the combination of total sleep deprivation, light therapy, and lithium was able to rapidly decrease depressive suicidality and prompt antidepressant response in drug-resistant major depression in the course of bipolar disorder. This study adds new evidence to warrant a role for chronotherapeutics as a first-line treatment for bipolar depression.

Drug names: ketamine (Ketalar and others), lithium (Lithobid and others).

Author affiliations: Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.

Potential conflicts of interest: The authors have no financial conflicts of interest to disclose.

Funding/support: The study was partly funded by the European Union (FP7 grant 222963-MOODINFLAME).

Role of the sponsor: The study sponsor had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

REFERENCES

64. Baxter LR Jr. Can lithium carbonate prolong the antidepressant effect of sleep deprivation? Arch Gen Psychiatry. 1985;42(6):635.

